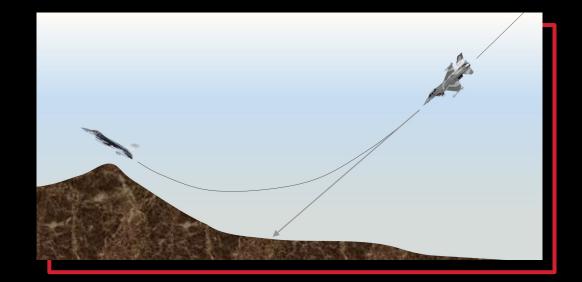


EVAA Operator Interface Design

ARCS Research Colloquia

Kayla Mesina and Ashley Santiago April 8, 2020



CALIFORNIA STATE UNIVERSITY NORTHRIDGE

RESEARCH STATEMENT

How might we communicate complex AI systems into salient information a human can understand in real-time when it comes to autonomous payload delivery?

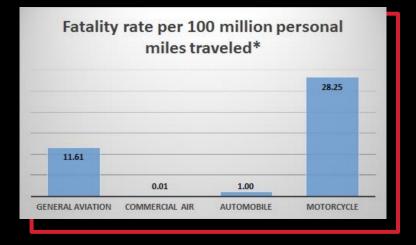
LITERATURE REVIEW

NASA Armstrong's Expandable Variable Autonomy Architecture (EVAA) framework supports multi-level autonomous piloting systems. Will protect against:

- catastrophic piloting faults
- faulty mission planning or execution
- inappropriate flight activities.

Exploring visual communication methods to explain complex AI systems into salient real-time information a human can understand.

Valuable methods for the EVAA framework:


- Testing
- Observation
- Evaluation

IMPROVED GROUND COLLISION AVOIDANCE SYSTEM TEST REPORT — IGCAS EVALUATION AT EAA AIRVENTURE OSHKOSH 2015 PREPARED BY: MICHAEL LAMARR, CHRIS CHINSKE, ETHAN WILLIAMS, CAMERON LAW, MARK SKOOG, PAUL SOROKOWSKI APRIL 2016

WHY DO WE NEED THE IMPROVED GROUND COLLISION AVOIDANCE SYSTEM?

- Controlled flight into terrain (CFIT) is leading cause of aviation fatalities
 - Night
 - Weather
 - Spatial Disorientation and loss of situation Awareness
- Enhanced ground proximity warning + terrain awareness and warning systems — reduced CFIT for large commercial air carriers
- Problem still remains for fighter aircraft, helicopters, and general aviation ≈ 100 deaths/ year (US alone)

IMPROVED GROUND COLLISION AVOIDANCE SYSTEM TEST REPORT — IGCAS EVALUATION AT EAA AIRVENTURE OSHKOSH 2015 PREPARED BY: MICHAEL LAMARR, CHRIS CHINSKE, ETHAN WILLIAMS, CAMERON LAW, MARK SKOOG, PAUL SOROKOWSKI APRIL 2016

WHAT CAN WE DO?


- iGCAS for General Aviation (GA)
 - Reliable collision avoidance for all aircraft
 - \circ Manual \rightarrow automatic versions
 - Tailorable to user's price point
 - Walk-on tablet/phone warning system
 - Downloadable app

IMPROVED GROUND COLLISION AVOIDANCE SYSTEM TEST REPORT — IGCAS EVALUATION AT EAA AIRVENTURE OSHKOSH 2015 PREPARED BY: MICHAEL LAMARR, CHRIS CHINSKE, ETHAN WILLIAMS, CAMERON LAW, MARK SKOOG, PAUL SOROKOWSKI APRIL 2016

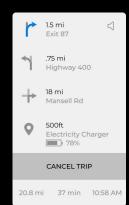
FLOW

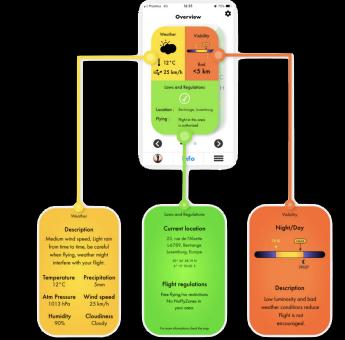
- Runs in background of existing navigation app
- Setup iGCAS for specific aircraft
- Switches to Viable Maneuver Display (VMD) (Caution State) near terrain
- Switches to Avoidance Director Display (ADD) (Warning State) when impact is imminent
- Switches back to VMD once imminent impact is resolved
- Switches back to navigation app once clear of terrain

RESEARCH APPROACH METHODS

- Assess needs for improvement before adding new features.
- Design and prototype mobile interaction visual systems
 - Visual systems standards to assist autonomous systems (mobile)
 - Social interfaces (elements for UAV so people don't feel scared)
- Evaluation of the interfaces
- User testing
 - Scenario-based analysis
 - Using same testing procedure from EVAA report
- Experiments at Armstrong

RESEARCH APPROACH METHODS

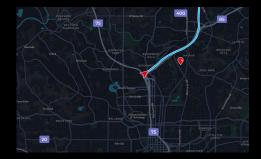

Mission functions:

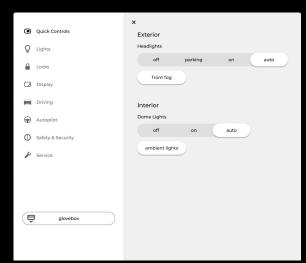

• takeoff, landing, in-flight route planner, mission planner

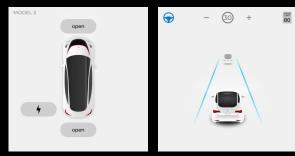
Sensors:

- Aircraft state
- Navigation: GPS, Vis Nav
- Physical threats: DAA Radar
- Environmental threats: winds, weather

RESEARCH APPROACH METHODS


GCAS Cuing


- Viable Maneuver Display (VMD) aircraft directions (left right forward)
- Avoidance Director Display (ADD) clearer view for the pilot to see specific instructions


Intent Manager: Autonomy must express its intent to others

• Voice, lighting, tone

WORKPLAN / TIMELINE

(April — mid-May)	PHASE 1: REPLICATE EXISTING UI
(mid-May — July)	PHASE 2: ADD (Avoidance Director Display) Improvements
(July — mid-August)	PHASE 3: VMD (Viable Maneuver Display) Improvements
(mid-August — October)	PHASE 4: Dashboard and Navigation
(October — mid-November)	PHASE 5: Using AR — Where's My Drone?
(mid-November — January)	PHASE 6: FUTURE RESEARCH — various display sizes
(January — mid-February)	PHASE 7: FUTURE RESEARCH — Incorporating Helicopter Avoidance Models

*Other possible Improvements before made to public:

- Integrate iGCAS into the PFD or other display in glass cockpit
- Integrate iGCAS into synthetic vision display
- Add more audio on VMD to inform conditions are getting worse
- Add more info on bank angles such as a tick mark or chevrons on overbank and over pitch
- Provide down draft and up draft ambient conditions
- Optional onboarding feature on app
- Fly more scenarios + more of the VMD scenarios to feel comfortable
- Allow a simulation mode for iGCAS

- iGCAS testing feedback for displays, audio cues, maneuvers, and performance data.
- Known limitations and more testing is needed to identify all existing limitations.
 - System matured towards transition to public availability
 - Any changes **shouldn't affect the clarity and simplicity** of the system.