

Human-Machine Teaming: NASA Mars and Europa Missions

Human-Machine Teamwork with Explainable AI

Synopsis

Research Objective

Task: To investigate different augmented reality (AR) systems and how they compare.

Goal: The user experience will provide a more efficient method to assess AR technology as well as discover potential areas for improvement in contemporary AR devices. This will ultimately improve human systems integrations.

Research Approach

We interviewed approximately 15 participants at a time per day (N = 45). Conversation and verbal decisions relating to planning and their context were documented. The research team then coded key words and categorized them in groups and their sub-soft skills:

- **Efficiency Optimizer:** streamline tasks

Citations

doi 10 1177/0306312712444645

• UX encompasses a user's perceptions, emotions, and responses that result from their interaction with a particular product or service.

• It involves understanding users' needs and behaviors, conducting user research, creating user personas, and designing interfaces that optimize the overall experience based on the research and data collected.

Research and Strategy - Design - Wireframe - Prototyping -Interaction/Visuals Testing - User Usability - Feedback - KPI Audit

Corporate Knowledge Gluer: to fill in knowledge gaps

Bridge Builder: to create collective understanding between teams

Vibe Dispatcher: assess/conduct actions based on team emotions

Blackwood K, Murphy E, Le M, et al. Prototyping a Socio-Technical Ecosystem at Scale with Design Simulation. Forthcoming. Cummings JN, Kiesler S. Who collaborates successfully? Prior experience reduces collaboration barriers in distributed interdisciplinary research. In: Proceedings of the 2008 ACM Conference on Computer Supported Cooperative Work. CSCW '08. Association for Computing Machinery; 2008:437-446. doi:10.1145/1460563.146063

Slade E, Kern PA, Kegebein RL, et al. Collaborative team dynamics and scholarly outcomes of multidisciplinary research teams: A mixed-methods approach. J Clin Fransl Sci. 2023;7(1):e59. doi:10.1017/cts.2023.9

Saraiva J. Janet Vertesi, Seeing Like A Rover: How Robots, Teams, and Images Craft Knowledge of Mars. Chicago and London: University of Chicago Press, 2015. 318 + XI PP. ISBN: 978-0-226-15596-8. HoST - Journal of History of Science and Technology.2016;10. doi:10.1515/host-2016-000

Vertesi J. Seeing like a Rover: Visualization, embodiment, and interaction on the Mars Exploration Rover Mission. Soc Stud Sci. 2012;42(3):393-414

Research Results and Products

Products | Immersive Headsets Used: Microsoft Hololens II & Apple Vision Pro **Research, Results, & Observations:**

- with display.
- real-world environment.

Commercialization and/or Societal Impact Opportunities

Healthcare & Rehabilitation:

- mental health treatments.
- confinement, and the challenges.

Training & Remote Collaboration Tools:

- with remote environments in real time.
- healthcare. By offering immersive, risk-free.

Team Names & Collaborators

ARCS Fellows: Alex Christoforatos, Psychological Sciences; Dana Bellinger, Psychology; Eli Bonilla, Systems Graphics Design, UX/UI; Jackie Marie Hunt, Psychological Sciences; Jared Carrillo, Mechanical Engineering; Jodee Ann Conui, Psychology; Jacksen Smith, Medical Sciences

Faculty: Thomas Chan, Ph.D, Psychology

NASA Collaborators: So Young Kim, Ph.D. (JPL) & Basak Ramaswamy, Ph.D. (JPL)

• Visual Challenges: Off-set peripheral visuals, impaired visual depth of field when interacting

• Off-Balance/Mobility: Potentially connected to the visual problems & device calibration. Users where aware of wearing the device and displayed extra cautionary movements. • **Situational Awareness:** Issues with vertical adjustments and readjusting to a digital and

User Experience/Physical: Lag in interactions and movements and overdramatized motions.

• The precision and realism required could translate to advancements in AR/VR-based rehabilitation and

• AR/VR environments could inform us about the psychological and social effects of isolation,

• AR/VR research drives innovations in healthcare, including AR/VR-assisted surgeries, medical training, and mental health treatments like exposure therapy for PTSD, anxiety, and phobias.

• This technology is invaluable for sectors such as architecture, engineering, medicine, and education, as it pushes forward collaborative tools that allow scientists, engineers, and other industries to interact

• AR/VR research is widely applied in training programs for industries like aviation, military, and

